
Prolog	programming	for	artificial	intelligence	4th	edition	pdf	free	download

http://ydeepty.com/wb3?utm_term=prolog%20programming%20for%20artificial%20intelligence%204th%20edition%20pdf%20free%20download

ISBN-13:	9780321417466Prolog	Programming	for	Artificial	IntelligenceFree	delivery	Academia.edu	uses	cookies	to	personalize	content,	tailor	ads	and	improve	the	user	experience.	By	using	our	site,	you	agree	to	our	collection	of	information	through	the	use	of	cookies.	To	learn	more,	view	our	Privacy	Policy.	Programming	language	that	uses	first
order	logic	This	article	is	about	the	programming	language.	For	the	narrative	device,	see	Prologue.	For	other	uses,	see	Prologue	(disambiguation).	PrologParadigmLogicDesigned	byAlain	Colmerauer,	Robert	KowalskiFirst	appeared1972;	50	years	ago	(1972)Stable	releasePart	1:	General	core-Edition	1	(June	1995;	27	years	ago	(1995-06))Part	2:
Modules-Edition	1	(June	2000;	22	years	ago	(2000-06))	Typing	disciplineUntyped	(its	single	data	type	is	"term")Filename	extensions.pl,	.pro,	.PWebsitePart	1:	www.iso.org/standard/21413.html	Part	2:	www.iso.org/standard/20775.htmlMajor	implementationsB-Prolog,	Ciao,	ECLiPSe,	GNU	Prolog,	Poplog	Prolog,	P#,	Quintus	Prolog,	SICStus,
Strawberry,	SWI-Prolog,	Tau	Prolog,	tuProlog,	WIN-PROLOG,	XSB,	YAP.DialectsISO	Prolog,	Edinburgh	PrologInfluenced	byPlannerInfluencedCHR,	Clojure,	Datalog,	Erlang,	KL0,	KL1,	Mercury,	Oz,	Strand,	Visual	Prolog,	XSB	Prolog	at	Wikibooks	Prolog	is	a	logic	programming	language	associated	with	artificial	intelligence	and	computational
linguistics.[1][2][3]	Prolog	has	its	roots	in	first-order	logic,	a	formal	logic,	and	unlike	many	other	programming	languages,	Prolog	is	intended	primarily	as	a	declarative	programming	language:	the	program	logic	is	expressed	in	terms	of	relations,	represented	as	facts	and	rules.	A	computation	is	initiated	by	running	a	query	over	these	relations.[4]	The
language	was	developed	and	implemented	in	Marseille,	France,	in	1972	by	Alain	Colmerauer	with	Philippe	Roussel,	based	on	Robert	Kowalski's	procedural	interpretation	of	Horn	clauses	at	University	of	Edinburgh.[5][6][7]	Prolog	was	one	of	the	first	logic	programming	languages[8]	and	remains	the	most	popular	such	language	today,	with	several	free
and	commercial	implementations	available.	The	language	has	been	used	for	theorem	proving,[9]	expert	systems,[10]	term	rewriting,[11]	type	systems,[12]	and	automated	planning,[13]	as	well	as	its	original	intended	field	of	use,	natural	language	processing.[14][15]	Modern	Prolog	environments	support	the	creation	of	graphical	user	interfaces,	as
well	as	administrative	and	networked	applications.	Prolog	is	well-suited	for	specific	tasks	that	benefit	from	rule-based	logical	queries	such	as	searching	databases,	voice	control	systems,	and	filling	templates.	Syntax	and	semantics	Main	article:	Prolog	syntax	and	semantics	In	Prolog,	program	logic	is	expressed	in	terms	of	relations,	and	a	computation
is	initiated	by	running	a	query	over	these	relations.	Relations	and	queries	are	constructed	using	Prolog's	single	data	type,	the	term.[4]	Relations	are	defined	by	clauses.	Given	a	query,	the	Prolog	engine	attempts	to	find	a	resolution	refutation	of	the	negated	query.	If	the	negated	query	can	be	refuted,	i.e.,	an	instantiation	for	all	free	variables	is	found
that	makes	the	union	of	clauses	and	the	singleton	set	consisting	of	the	negated	query	false,	it	follows	that	the	original	query,	with	the	found	instantiation	applied,	is	a	logical	consequence	of	the	program.	This	makes	Prolog	(and	other	logic	programming	languages)	particularly	useful	for	database,	symbolic	mathematics,	and	language	parsing
applications.	Because	Prolog	allows	impure	predicates,	checking	the	truth	value	of	certain	special	predicates	may	have	some	deliberate	side	effect,	such	as	printing	a	value	to	the	screen.	Because	of	this,	the	programmer	is	permitted	to	use	some	amount	of	conventional	imperative	programming	when	the	logical	paradigm	is	inconvenient.	It	has	a
purely	logical	subset,	called	"pure	Prolog",	as	well	as	a	number	of	extralogical	features.	Data	types	Prolog's	single	data	type	is	the	term.	Terms	are	either	atoms,	numbers,	variables	or	compound	terms.	An	atom	is	a	general-purpose	name	with	no	inherent	meaning.	Examples	of	atoms	include	x,	red,	'Taco',	and	'some	atom'.	Numbers	can	be	floats	or
integers.	ISO	standard	compatible	Prolog	systems	can	check	the	Prolog	flag	"bounded".	Most	of	the	major	Prolog	systems	support	arbitrary	length	integer	numbers.	Variables	are	denoted	by	a	string	consisting	of	letters,	numbers	and	underscore	characters,	and	beginning	with	an	upper-case	letter	or	underscore.	Variables	closely	resemble	variables	in
logic	in	that	they	are	placeholders	for	arbitrary	terms.	A	compound	term	is	composed	of	an	atom	called	a	"functor"	and	a	number	of	"arguments",	which	are	again	terms.	Compound	terms	are	ordinarily	written	as	a	functor	followed	by	a	comma-separated	list	of	argument	terms,	which	is	contained	in	parentheses.	The	number	of	arguments	is	called	the
term's	arity.	An	atom	can	be	regarded	as	a	compound	term	with	arity	zero.	An	example	of	a	compound	term	is	person_friends(zelda,[tom,jim]).	Special	cases	of	compound	terms:	A	List	is	an	ordered	collection	of	terms.	It	is	denoted	by	square	brackets	with	the	terms	separated	by	commas,	or	in	the	case	of	the	empty	list,	by	[].	For	example,	[1,2,3]	or
[red,green,blue].	Strings:	A	sequence	of	characters	surrounded	by	quotes	is	equivalent	to	either	a	list	of	(numeric)	character	codes,	a	list	of	characters	(atoms	of	length	1),	or	an	atom	depending	on	the	value	of	the	Prolog	flag	double_quotes.	For	example,	"to	be,	or	not	to	be".[16]	ISO	Prolog	provides	the	atom/1,	number/1,	integer/1,	and	float/1
predicates	for	type-checking.[17]	Rules	and	facts	Prolog	programs	describe	relations,	defined	by	means	of	clauses.	Pure	Prolog	is	restricted	to	Horn	clauses.	There	are	two	types	of	clauses:	facts	and	rules.	A	rule	is	of	the	form	Head	:-	Body.	and	is	read	as	"Head	is	true	if	Body	is	true".	A	rule's	body	consists	of	calls	to	predicates,	which	are	called	the
rule's	goals.	The	built-in	logical	operator	,/2	(meaning	an	arity	2	operator	with	name	,)	denotes	conjunction	of	goals,	and	;/2	denotes	disjunction.	Conjunctions	and	disjunctions	can	only	appear	in	the	body,	not	in	the	head	of	a	rule.	Clauses	with	empty	bodies	are	called	facts.	An	example	of	a	fact	is:	cat(tom).	which	is	equivalent	to	the	rule:	cat(tom)	:-
true.	The	built-in	predicate	true/0	is	always	true.	Given	the	above	fact,	one	can	ask:	is	tom	a	cat?	?-	cat(tom).	Yes	what	things	are	cats?	?-	cat(X).	X	=	tom	Clauses	with	bodies	are	called	rules.	An	example	of	a	rule	is:	animal(X)	:-	cat(X).	If	we	add	that	rule	and	ask	what	things	are	animals?	?-	animal(X).	X	=	tom	Due	to	the	relational	nature	of	many	built-
in	predicates,	they	can	typically	be	used	in	several	directions.	For	example,	length/2	can	be	used	to	determine	the	length	of	a	list	(length(List,	L),	given	a	list	List)	as	well	as	to	generate	a	list	skeleton	of	a	given	length	(length(X,	5)),	and	also	to	generate	both	list	skeletons	and	their	lengths	together	(length(X,	L)).	Similarly,	append/3	can	be	used	both	to
append	two	lists	(append(ListA,	ListB,	X)	given	lists	ListA	and	ListB)	as	well	as	to	split	a	given	list	into	parts	(append(X,	Y,	List),	given	a	list	List).	For	this	reason,	a	comparatively	small	set	of	library	predicates	suffices	for	many	Prolog	programs.	As	a	general	purpose	language,	Prolog	also	provides	various	built-in	predicates	to	perform	routine	activities
like	input/output,	using	graphics	and	otherwise	communicating	with	the	operating	system.	These	predicates	are	not	given	a	relational	meaning	and	are	only	useful	for	the	side-effects	they	exhibit	on	the	system.	For	example,	the	predicate	write/1	displays	a	term	on	the	screen.	Execution	Execution	of	a	Prolog	program	is	initiated	by	the	user's	posting	of
a	single	goal,	called	the	query.	Logically,	the	Prolog	engine	tries	to	find	a	resolution	refutation	of	the	negated	query.	The	resolution	method	used	by	Prolog	is	called	SLD	resolution.	If	the	negated	query	can	be	refuted,	it	follows	that	the	query,	with	the	appropriate	variable	bindings	in	place,	is	a	logical	consequence	of	the	program.	In	that	case,	all
generated	variable	bindings	are	reported	to	the	user,	and	the	query	is	said	to	have	succeeded.	Operationally,	Prolog's	execution	strategy	can	be	thought	of	as	a	generalization	of	function	calls	in	other	languages,	one	difference	being	that	multiple	clause	heads	can	match	a	given	call.	In	that	case,	the	system	creates	a	choice-point,	unifies	the	goal	with
the	clause	head	of	the	first	alternative,	and	continues	with	the	goals	of	that	first	alternative.	If	any	goal	fails	in	the	course	of	executing	the	program,	all	variable	bindings	that	were	made	since	the	most	recent	choice-point	was	created	are	undone,	and	execution	continues	with	the	next	alternative	of	that	choice-point.	This	execution	strategy	is	called
chronological	backtracking.	For	example:	mother_child(trude,	sally).	father_child(tom,	sally).	father_child(tom,	erica).	father_child(mike,	tom).	sibling(X,	Y)	:-	parent_child(Z,	X),	parent_child(Z,	Y).	parent_child(X,	Y)	:-	father_child(X,	Y).	parent_child(X,	Y)	:-	mother_child(X,	Y).	This	results	in	the	following	query	being	evaluated	as	true:	?-	sibling(sally,
erica).	Yes	This	is	obtained	as	follows:	Initially,	the	only	matching	clause-head	for	the	query	sibling(sally,	erica)	is	the	first	one,	so	proving	the	query	is	equivalent	to	proving	the	body	of	that	clause	with	the	appropriate	variable	bindings	in	place,	i.e.,	the	conjunction	(parent_child(Z,sally),	parent_child(Z,erica)).	The	next	goal	to	be	proved	is	the	leftmost
one	of	this	conjunction,	i.e.,	parent_child(Z,	sally).	Two	clause	heads	match	this	goal.	The	system	creates	a	choice-point	and	tries	the	first	alternative,	whose	body	is	father_child(Z,	sally).	This	goal	can	be	proved	using	the	fact	father_child(tom,	sally),	so	the	binding	Z	=	tom	is	generated,	and	the	next	goal	to	be	proved	is	the	second	part	of	the	above
conjunction:	parent_child(tom,	erica).	Again,	this	can	be	proved	by	the	corresponding	fact.	Since	all	goals	could	be	proved,	the	query	succeeds.	Since	the	query	contained	no	variables,	no	bindings	are	reported	to	the	user.	A	query	with	variables,	like:	?-	father_child(Father,	Child).	enumerates	all	valid	answers	on	backtracking.	Notice	that	with	the
code	as	stated	above,	the	query	?-	sibling(sally,	sally).	also	succeeds.	One	would	insert	additional	goals	to	describe	the	relevant	restrictions,	if	desired.	Loops	and	recursion	Iterative	algorithms	can	be	implemented	by	means	of	recursive	predicates.[18]	Negation	The	built-in	Prolog	predicate	\+/1	provides	negation	as	failure,	which	allows	for	non-
monotonic	reasoning.	The	goal	\+	illegal(X)	in	the	rule	legal(X)	:-	\+	illegal(X).	is	evaluated	as	follows:	Prolog	attempts	to	prove	illegal(X).	If	a	proof	for	that	goal	can	be	found,	the	original	goal	(i.e.,	\+	illegal(X))	fails.	If	no	proof	can	be	found,	the	original	goal	succeeds.	Therefore,	the	\+/1	prefix	operator	is	called	the	"not	provable"	operator,	since	the
query	?-	\+	Goal.	succeeds	if	Goal	is	not	provable.	This	kind	of	negation	is	sound	if	its	argument	is	"ground"	(i.e.	contains	no	variables).	Soundness	is	lost	if	the	argument	contains	variables	and	the	proof	procedure	is	complete.	In	particular,	the	query	?-	legal(X).	now	cannot	be	used	to	enumerate	all	things	that	are	legal.	Programming	in	Prolog	In
Prolog,	loading	code	is	referred	to	as	consulting.	Prolog	can	be	used	interactively	by	entering	queries	at	the	Prolog	prompt	?-.	If	there	is	no	solution,	Prolog	writes	no.	If	a	solution	exists	then	it	is	printed.	If	there	are	multiple	solutions	to	the	query,	then	these	can	be	requested	by	entering	a	semi-colon	;.	There	are	guidelines	on	good	programming
practice	to	improve	code	efficiency,	readability	and	maintainability.[19]	Here	follow	some	example	programs	written	in	Prolog.	Hello	World	An	example	of	a	query:	?-	write('Hello	World!'),	nl.	Hello	World!	true.	?-	Compiler	optimization	Any	computation	can	be	expressed	declaratively	as	a	sequence	of	state	transitions.	As	an	example,	an	optimizing
compiler	with	three	optimization	passes	could	be	implemented	as	a	relation	between	an	initial	program	and	its	optimized	form:	program_optimized(Prog0,	Prog)	:-	optimization_pass_1(Prog0,	Prog1),	optimization_pass_2(Prog1,	Prog2),	optimization_pass_3(Prog2,	Prog).	or	equivalently	using	DCG	notation:	program_optimized	-->	optimization_pass_1,
optimization_pass_2,	optimization_pass_3.	Quicksort	The	quicksort	sorting	algorithm,	relating	a	list	to	its	sorted	version:	partition([],	_,	[],	[]).	partition([X|Xs],	Pivot,	Smalls,	Bigs)	:-	(X	@<	Pivot	->	Smalls	=	[X|Rest],	partition(Xs,	Pivot,	Rest,	Bigs)	;	Bigs	=	[X|Rest],	partition(Xs,	Pivot,	Smalls,	Rest)).	quicksort([])	-->	[].	quicksort([X|Xs])	-->	{
partition(Xs,	X,	Smaller,	Bigger)	},	quicksort(Smaller),	[X],	quicksort(Bigger).	Design	patterns	of	Prolog	A	design	pattern	is	a	general	reusable	solution	to	a	commonly	occurring	problem	in	software	design.	Some	design	patterns	in	Prolog	are	skeletons,	techniques,[20][21]	cliches,[22]	program	schemata,[23]	logic	description	schemata,[24]	and	higher
order	programming.[25]	Higher-order	programming	Main	articles:	Higher-order	logic	and	Higher-order	programming	A	higher-order	predicate	is	a	predicate	that	takes	one	or	more	other	predicates	as	arguments.	Although	support	for	higher-order	programming	takes	Prolog	outside	the	domain	of	first-order	logic,	which	does	not	allow	quantification
over	predicates,[26]	ISO	Prolog	now	has	some	built-in	higher-order	predicates	such	as	call/1,	call/2,	call/3,	findall/3,	setof/3,	and	bagof/3.[27]	Furthermore,	since	arbitrary	Prolog	goals	can	be	constructed	and	evaluated	at	run-time,	it	is	easy	to	write	higher-order	predicates	like	maplist/2,	which	applies	an	arbitrary	predicate	to	each	member	of	a	given
list,	and	sublist/3,	which	filters	elements	that	satisfy	a	given	predicate,	also	allowing	for	currying.[25]	To	convert	solutions	from	temporal	representation	(answer	substitutions	on	backtracking)	to	spatial	representation	(terms),	Prolog	has	various	all-solutions	predicates	that	collect	all	answer	substitutions	of	a	given	query	in	a	list.	This	can	be	used	for
list	comprehension.	For	example,	perfect	numbers	equal	the	sum	of	their	proper	divisors:	perfect(N)	:-	between(1,	inf,	N),	U	is	N	//	2,	findall(D,	(between(1,U,D),	N	mod	D	=:=	0),	Ds),	sumlist(Ds,	N).	This	can	be	used	to	enumerate	perfect	numbers,	and	also	to	check	whether	a	number	is	perfect.	As	another	example,	the	predicate	maplist	applies	a
predicate	P	to	all	corresponding	positions	in	a	pair	of	lists:	maplist(_,	[],	[]).	maplist(P,	[X|Xs],	[Y|Ys])	:-	call(P,	X,	Y),	maplist(P,	Xs,	Ys).	When	P	is	a	predicate	that	for	all	X,	P(X,Y)	unifies	Y	with	a	single	unique	value,	maplist(P,	Xs,	Ys)	is	equivalent	to	applying	the	map	function	in	functional	programming	as	Ys	=	map(Function,	Xs).	Higher-order
programming	style	in	Prolog	was	pioneered	in	HiLog	and	λProlog.	Modules	For	programming	in	the	large,	Prolog	provides	a	module	system.	The	module	system	is	standardised	by	ISO.[28]	However,	not	all	Prolog	compilers	support	modules,	and	there	are	compatibility	problems	between	the	module	systems	of	the	major	Prolog	compilers.[29]
Consequently,	modules	written	on	one	Prolog	compiler	will	not	necessarily	work	on	others.	Parsing	Main	articles:	Prolog	syntax	and	semantics	§	Definite	clause	grammars,	and	Definite	clause	grammar	There	is	a	special	notation	called	definite	clause	grammars	(DCGs).	A	rule	defined	via	-->/2	instead	of	:-/2	is	expanded	by	the	preprocessor
(expand_term/2,	a	facility	analogous	to	macros	in	other	languages)	according	to	a	few	straightforward	rewriting	rules,	resulting	in	ordinary	Prolog	clauses.	Most	notably,	the	rewriting	equips	the	predicate	with	two	additional	arguments,	which	can	be	used	to	implicitly	thread	state	around,[clarification	needed]	analogous	to	monads	in	other	languages.
DCGs	are	often	used	to	write	parsers	or	list	generators,	as	they	also	provide	a	convenient	interface	to	difference	lists.	Meta-interpreters	and	reflection	Prolog	is	a	homoiconic	language	and	provides	many	facilities	for	reflection.	Its	implicit	execution	strategy	makes	it	possible	to	write	a	concise	meta-circular	evaluator	(also	called	meta-interpreter)	for
pure	Prolog	code:	solve(true).	solve((Subgoal1,Subgoal2))	:-	solve(Subgoal1),	solve(Subgoal2).	solve(Head)	:-	clause(Head,	Body),	solve(Body).	where	true	represents	an	empty	conjunction,	and	clause(Head,	Body)	unifies	with	clauses	in	the	database	of	the	form	Head	:-	Body.	Since	Prolog	programs	are	themselves	sequences	of	Prolog	terms	(:-/2	is	an
infix	operator)	that	are	easily	read	and	inspected	using	built-in	mechanisms	(like	read/1),	it	is	possible	to	write	customized	interpreters	that	augment	Prolog	with	domain-specific	features.	For	example,	Sterling	and	Shapiro	present	a	meta-interpreter	that	performs	reasoning	with	uncertainty,	reproduced	here	with	slight	modifications:[30]: 330 
solve(true,	1)	:-	!.	solve((Subgoal1,Subgoal2),	Certainty)	:-	!,	solve(Subgoal1,	Certainty1),	solve(Subgoal2,	Certainty2),	Certainty	is	min(Certainty1,	Certainty2).	solve(Goal,	1)	:-	builtin(Goal),	!,	Goal.	solve(Head,	Certainty)	:-	clause_cf(Head,	Body,	Certainty1),	solve(Body,	Certainty2),	Certainty	is	Certainty1	*	Certainty2.	This	interpreter	uses	a	table	of
built-in	Prolog	predicates	of	the	form[30]: 327 	builtin(A	is	B).	builtin(read(X)).	%	etc.	and	clauses	represented	as	clause_cf(Head,	Body,	Certainty).	Given	those,	it	can	be	called	as	solve(Goal,	Certainty)	to	execute	Goal	and	obtain	a	measure	of	certainty	about	the	result.	Turing	completeness	Pure	Prolog	is	based	on	a	subset	of	first-order	predicate	logic,
Horn	clauses,	which	is	Turing-complete.	Turing	completeness	of	Prolog	can	be	shown	by	using	it	to	simulate	a	Turing	machine:	turing(Tape0,	Tape)	:-	perform(q0,	[],	Ls,	Tape0,	Rs),	reverse(Ls,	Ls1),	append(Ls1,	Rs,	Tape).	perform(qf,	Ls,	Ls,	Rs,	Rs)	:-	!.	perform(Q0,	Ls0,	Ls,	Rs0,	Rs)	:-	symbol(Rs0,	Sym,	RsRest),	once(rule(Q0,	Sym,	Q1,	NewSym,
Action)),	action(Action,	Ls0,	Ls1,	[NewSym|RsRest],	Rs1),	perform(Q1,	Ls1,	Ls,	Rs1,	Rs).	symbol([],	b,	[]).	symbol([Sym|Rs],	Sym,	Rs).	action(left,	Ls0,	Ls,	Rs0,	Rs)	:-	left(Ls0,	Ls,	Rs0,	Rs).	action(stay,	Ls,	Ls,	Rs,	Rs).	action(right,	Ls0,	[Sym|Ls0],	[Sym|Rs],	Rs).	left([],	[],	Rs0,	[b|Rs0]).	left([L|Ls],	Ls,	Rs,	[L|Rs]).	A	simple	example	Turing	machine	is
specified	by	the	facts:	rule(q0,	1,	q0,	1,	right).	rule(q0,	b,	qf,	1,	stay).	This	machine	performs	incrementation	by	one	of	a	number	in	unary	encoding:	It	loops	over	any	number	of	"1"	cells	and	appends	an	additional	"1"	at	the	end.	Example	query	and	result:	?-	turing([1,1,1],	Ts).	Ts	=	[1,	1,	1,	1]	;	This	illustrates	how	any	computation	can	be	expressed
declaratively	as	a	sequence	of	state	transitions,	implemented	in	Prolog	as	a	relation	between	successive	states	of	interest.	Implementation	Further	information:	Comparison	of	Prolog	implementations	ISO	Prolog	The	ISO	Prolog	standard	consists	of	two	parts.	ISO/IEC	13211-1,[27][31]	published	in	1995,	aims	to	standardize	the	existing	practices	of	the
many	implementations	of	the	core	elements	of	Prolog.	It	has	clarified	aspects	of	the	language	that	were	previously	ambiguous	and	leads	to	portable	programs.	There	are	three	corrigenda:	Cor.1:2007,[32]	Cor.2:2012,[33]	and	Cor.3:2017.[34]	ISO/IEC	13211-2,[27]	published	in	2000,	adds	support	for	modules	to	the	standard.	The	standard	is	maintained
by	the	ISO/IEC	JTC1/SC22/WG17[35]	working	group.	ANSI	X3J17	is	the	US	Technical	Advisory	Group	for	the	standard.[36]	Compilation	For	efficiency,	Prolog	code	is	typically	compiled	to	abstract	machine	code,	often	influenced	by	the	register-based	Warren	Abstract	Machine	(WAM)	instruction	set.[37]	Some	implementations	employ	abstract
interpretation	to	derive	type	and	mode	information	of	predicates	at	compile	time,	or	compile	to	real	machine	code	for	high	performance.[38]	Devising	efficient	implementation	methods	for	Prolog	code	is	a	field	of	active	research	in	the	logic	programming	community,	and	various	other	execution	methods	are	employed	in	some	implementations.	These
include	clause	binarization	and	stack-based	virtual	machines.[citation	needed]	Tail	recursion	Prolog	systems	typically	implement	a	well-known	optimization	method	called	tail	call	optimization	(TCO)	for	deterministic	predicates	exhibiting	tail	recursion	or,	more	generally,	tail	calls:	A	clause's	stack	frame	is	discarded	before	performing	a	call	in	a	tail
position.	Therefore,	deterministic	tail-recursive	predicates	are	executed	with	constant	stack	space,	like	loops	in	other	languages.	Term	indexing	Main	article:	Term	indexing	Finding	clauses	that	are	unifiable	with	a	term	in	a	query	is	linear	in	the	number	of	clauses.	Term	indexing	uses	a	data	structure	that	enables	sub-linear-time	lookups.[39]	Indexing
only	affects	program	performance,	it	does	not	affect	semantics.	Most	Prologs	only	use	indexing	on	the	first	term,	as	indexing	on	all	terms	is	expensive,	but	techniques	based	on	field-encoded	words	or	superimposed	codewords	provide	fast	indexing	across	the	full	query	and	head.[40][41]	Hashing	Some	Prolog	systems,	such	as	WIN-PROLOG	and	SWI-
Prolog,	now	implement	hashing	to	help	handle	large	datasets	more	efficiently.	This	tends	to	yield	very	large	performance	gains	when	working	with	large	corpora	such	as	WordNet.	Tabling	Some	Prolog	systems,	(B-Prolog,	XSB,	SWI-Prolog,	YAP,	and	Ciao),	implement	a	memoization	method	called	tabling,	which	frees	the	user	from	manually	storing
intermediate	results.	Tabling	is	a	space–time	tradeoff;	execution	time	can	be	reduced	by	using	more	memory	to	store	intermediate	results:[42][43]	Subgoals	encountered	in	a	query	evaluation	are	maintained	in	a	table,	along	with	answers	to	these	subgoals.	If	a	subgoal	is	re-encountered,	the	evaluation	reuses	information	from	the	table	rather	than	re-
performing	resolution	against	program	clauses.[44]	Tabling	can	be	extended	in	various	directions.	It	can	support	recursive	predicates	through	SLG-resolution	or	linear	tabling.	In	a	multi-threaded	Prolog	system	tabling	results	could	be	kept	private	to	a	thread	or	shared	among	all	threads.	And	in	incremental	tabling,	tabling	might	react	to	changes.
Implementation	in	hardware	During	the	Fifth	Generation	Computer	Systems	project,	there	were	attempts	to	implement	Prolog	in	hardware	with	the	aim	of	achieving	faster	execution	with	dedicated	architectures.[45][46][47]	Furthermore,	Prolog	has	a	number	of	properties	that	may	allow	speed-up	through	parallel	execution.[48]	A	more	recent
approach	has	been	to	compile	restricted	Prolog	programs	to	a	field	programmable	gate	array.[49]	However,	rapid	progress	in	general-purpose	hardware	has	consistently	overtaken	more	specialised	architectures.	Sega	implemented	Prolog	for	use	with	the	Sega	AI	Computer,	released	for	the	Japanese	market	in	1986.	Prolog	was	used	for	reading
natural	language	inputs,	in	the	Japanese	language,	via	a	touch	pad.[50]	Limitations	Although	Prolog	is	widely	used	in	research	and	education,[citation	needed]	Prolog	and	other	logic	programming	languages	have	not	had	a	significant	impact	on	the	computer	industry	in	general.[51]	Most	applications	are	small	by	industrial	standards,	with	few
exceeding	100,000	lines	of	code.[51][52]	Programming	in	the	large	is	considered	to	be	complicated	because	not	all	Prolog	compilers	support	modules,	and	there	are	compatibility	problems	between	the	module	systems	of	the	major	Prolog	compilers.[29]	Portability	of	Prolog	code	across	implementations	has	also	been	a	problem,	but	developments	since
2007	have	meant:	"the	portability	within	the	family	of	Edinburgh/Quintus	derived	Prolog	implementations	is	good	enough	to	allow	for	maintaining	portable	real-world	applications."[53]	Software	developed	in	Prolog	has	been	criticised	for	having	a	high	performance	penalty	compared	to	conventional	programming	languages.	In	particular,	Prolog's	non-
deterministic	evaluation	strategy	can	be	problematic	when	programming	deterministic	computations,	or	when	even	using	"don't	care	non-determinism"	(where	a	single	choice	is	made	instead	of	backtracking	over	all	possibilities).	Cuts	and	other	language	constructs	may	have	to	be	used	to	achieve	desirable	performance,	destroying	one	of	Prolog's
main	attractions,	the	ability	to	run	programs	"backwards	and	forwards".[54]	Prolog	is	not	purely	declarative:	because	of	constructs	like	the	cut	operator,	a	procedural	reading	of	a	Prolog	program	is	needed	to	understand	it.[55]	The	order	of	clauses	in	a	Prolog	program	is	significant,	as	the	execution	strategy	of	the	language	depends	on	it.[56]	Other
logic	programming	languages,	such	as	Datalog,	are	truly	declarative	but	restrict	the	language.	As	a	result,	many	practical	Prolog	programs	are	written	to	conform	to	Prolog's	depth-first	search	order,	rather	than	as	purely	declarative	logic	programs.[54]	Extensions	Various	implementations	have	been	developed	from	Prolog	to	extend	logic
programming	capabilities	in	numerous	directions.	These	include	types,	modes,	constraint	logic	programming	(CLP),	object-oriented	logic	programming	(OOLP),	concurrency,	linear	logic	(LLP),	functional	and	higher-order	logic	programming	capabilities,	plus	interoperability	with	knowledge	bases:	Types	Prolog	is	an	untyped	language.	Attempts	to
introduce	types	date	back	to	the	1980s,[57][58]	and	as	of	2008	there	are	still	attempts	to	extend	Prolog	with	types.[59]	Type	information	is	useful	not	only	for	type	safety	but	also	for	reasoning	about	Prolog	programs.[60]	Modes	Mode	specifier	Interpretation	+	nonvar	on	entry	-	var	on	entry	?	Not	specified	The	syntax	of	Prolog	does	not	specify	which
arguments	of	a	predicate	are	inputs	and	which	are	outputs.[61]	However,	this	information	is	significant	and	it	is	recommended	that	it	be	included	in	the	comments.[62]	Modes	provide	valuable	information	when	reasoning	about	Prolog	programs[60]	and	can	also	be	used	to	accelerate	execution.[63]	Constraints	Constraint	logic	programming	extends
Prolog	to	include	concepts	from	constraint	satisfaction.[64][65]	A	constraint	logic	program	allows	constraints	in	the	body	of	clauses,	such	as:	A(X,Y)	:-	X+Y>0.	It	is	suited	to	large-scale	combinatorial	optimisation	problems[66]	and	is	thus	useful	for	applications	in	industrial	settings,	such	as	automated	time-tabling	and	production	scheduling.	Most
Prolog	systems	ship	with	at	least	one	constraint	solver	for	finite	domains,	and	often	also	with	solvers	for	other	domains	like	rational	numbers.	Object-orientation	Flora-2	is	an	object-oriented	knowledge	representation	and	reasoning	system	based	on	F-logic	and	incorporates	HiLog,	Transaction	logic,	and	defeasible	reasoning.	Logtalk	is	an	object-
oriented	logic	programming	language	that	can	use	most	Prolog	implementations	as	a	back-end	compiler.	As	a	multi-paradigm	language,	it	includes	support	for	both	prototypes	and	classes.	Oblog	is	a	small,	portable,	object-oriented	extension	to	Prolog	by	Margaret	McDougall	of	EdCAAD,	University	of	Edinburgh.	Objlog	was	a	frame-based	language
combining	objects	and	Prolog	II	from	CNRS,	Marseille,	France.	Prolog++	was	developed	by	Logic	Programming	Associates	and	first	released	in	1989	for	MS-DOS	PCs.	Support	for	other	platforms	was	added,	and	a	second	version	was	released	in	1995.	A	book	about	Prolog++	by	Chris	Moss	was	published	by	Addison-Wesley	in	1994.	Visual	Prolog	is	a
multi-paradigm	language	with	interfaces,	classes,	implementations	and	object	expressions.	Graphics	Prolog	systems	that	provide	a	graphics	library	are	SWI-Prolog,[67]	Visual	Prolog,	WIN-PROLOG,	and	B-Prolog.	Concurrency	Prolog-MPI	is	an	open-source	SWI-Prolog	extension	for	distributed	computing	over	the	Message	Passing	Interface.[68]	Also
there	are	various	concurrent	Prolog	programming	languages.[69]	Web	programming	Some	Prolog	implementations,	notably	Visual	Prolog,	SWI-Prolog	and	Ciao,	support	server-side	web	programming	with	support	for	web	protocols,	HTML	and	XML.[70]	There	are	also	extensions	to	support	semantic	web	formats	such	as	RDF	and	OWL.[71][72]	Prolog
has	also	been	suggested	as	a	client-side	language.[73]	In	addition	Visual	Prolog	supports	JSON-RPC	and	Websockets.	Adobe	Flash	Cedar	is	a	free	and	basic	Prolog	interpreter.	From	version	4	and	above	Cedar	has	a	FCA	(Flash	Cedar	App)	support.	This	provides	a	new	platform	to	programming	in	Prolog	through	ActionScript.	Other	F-logic	extends
Prolog	with	frames/objects	for	knowledge	representation.	Transaction	logic	extends	Prolog	with	a	logical	theory	of	state-changing	update	operators.	It	has	both	a	model-theoretic	and	procedural	semantics.	OW	Prolog	has	been	created	in	order	to	answer	Prolog's	lack	of	graphics	and	interface.	Interfaces	to	other	languages	Frameworks	exist	which	can
bridge	between	Prolog	and	other	languages:	The	LPA	Intelligence	Server	allows	the	embedding	of	LPA	Prolog	for	Windows	within	C,	C#,	C++,	Java,	VB,	Delphi,	.Net,	Lua,	Python	and	other	languages.	It	exploits	the	dedicated	string	data-type	which	LPA	Prolog	provides	The	Logic	Server	API	allows	both	the	extension	and	embedding	of	Prolog	in	C,
C++,	Java,	VB,	Delphi,	.NET	and	any	language/environment	which	can	call	a	.dll	or	.so.	It	is	implemented	for	Amzi!	Prolog	Amzi!	Prolog	+	Logic	Server	but	the	API	specification	can	be	made	available	for	any	implementation.	JPL	is	a	bi-directional	Java	Prolog	bridge	which	ships	with	SWI-Prolog	by	default,	allowing	Java	and	Prolog	to	call	each	other
(recursively).	It	is	known	to	have	good	concurrency	support	and	is	under	active	development.	InterProlog,	a	programming	library	bridge	between	Java	and	Prolog,	implementing	bi-directional	predicate/method	calling	between	both	languages.	Java	objects	can	be	mapped	into	Prolog	terms	and	vice	versa.	Allows	the	development	of	GUIs	and	other
functionality	in	Java	while	leaving	logic	processing	in	the	Prolog	layer.	Supports	XSB,	with	support	for	SWI-Prolog	and	YAP	planned	for	2013.	Prova	provides	native	syntax	integration	with	Java,	agent	messaging	and	reaction	rules.	Prova	positions	itself	as	a	rule-based	scripting	(RBS)	system	for	middleware.	The	language	breaks	new	ground	in
combining	imperative	and	declarative	programming.	PROL	An	embeddable	Prolog	engine	for	Java.	It	includes	a	small	IDE	and	a	few	libraries.	GNU	Prolog	for	Java	is	an	implementation	of	ISO	Prolog	as	a	Java	library	(gnu.prolog)	Ciao	provides	interfaces	to	C,	C++,	Java,	and	relational	databases.	C#-Prolog	is	a	Prolog	interpreter	written	in	(managed)
C#.	Can	easily	be	integrated	in	C#	programs.	Characteristics:	reliable	and	fairly	fast	interpreter,	command	line	interface,	Windows-interface,	builtin	DCG,	XML-predicates,	SQL-predicates,	extendible.	The	complete	source	code	is	available,	including	a	parser	generator	that	can	be	used	for	adding	special	purpose	extensions.	A	Warren	Abstract
Machine	for	PHP	A	Prolog	compiler	and	interpreter	in	PHP	5.3.	A	library	that	can	be	used	standalone	or	within	Symfony2.1	framework	which	was	translated	from	Stephan	Buettcher's	work	in	Java	which	can	be	found	[here	stefan.buettcher.org/cs/wam/index.html]	tuProlog	is	a	light-weight	Prolog	system	for	distributed	applications	and	infrastructures,
intentionally	designed	around	a	minimal	core,	to	be	either	statically	or	dynamically	configured	by	loading/unloading	libraries	of	predicates.	tuProlog	natively	supports	multi-paradigm	programming,	providing	a	clean,	seamless	integration	model	between	Prolog	and	mainstream	object-oriented	languages—namely	Java,	for	tuProlog	Java	version,	and	any
.NET-based	language	(C#,	F#..),	for	tuProlog	.NET	version.[74]	History	The	name	Prolog	was	chosen	by	Philippe	Roussel	as	an	abbreviation	for	programmation	en	logique	(French	for	programming	in	logic).	It	was	created	around	1972	by	Alain	Colmerauer	with	Philippe	Roussel,	based	on	Robert	Kowalski's	procedural	interpretation	of	Horn	clauses.	It
was	motivated	in	part	by	the	desire	to	reconcile	the	use	of	logic	as	a	declarative	knowledge	representation	language	with	the	procedural	representation	of	knowledge	that	was	popular	in	North	America	in	the	late	1960s	and	early	1970s.	According	to	Robert	Kowalski,	the	first	Prolog	system	was	developed	in	1972	by	Colmerauer	and	Phillipe	Roussel.
[5]	The	first	implementation	of	Prolog	was	an	interpreter	written	in	Fortran	by	Gerard	Battani	and	Henri	Meloni.	David	H.	D.	Warren	took	this	interpreter	to	University	of	Edinburgh,	and	there	implemented	an	alternative	front-end,	which	came	to	define	the	“Edinburgh	Prolog”	syntax	used	by	most	modern	implementations.	Warren	also	implemented
the	first	compiler	for	Prolog,	creating	the	influential	DEC-10	Prolog	in	collaboration	with	Fernando	Pereira.	Warren	later	generalised	the	ideas	behind	DEC-10	Prolog,	to	create	the	Warren	Abstract	Machine.	European	AI	researchers	favored	Prolog	while	Americans	favored	Lisp,	reportedly	causing	many	nationalistic	debates	on	the	merits	of	the
languages.[75]	Much	of	the	modern	development	of	Prolog	came	from	the	impetus	of	the	Fifth	Generation	Computer	Systems	project	(FGCS),	which	developed	a	variant	of	Prolog	named	Kernel	Language	for	its	first	operating	system.	Pure	Prolog	was	originally	restricted	to	the	use	of	a	resolution	theorem	prover	with	Horn	clauses	of	the	form:	H	:-	B1,
...,	Bn.	The	application	of	the	theorem-prover	treats	such	clauses	as	procedures:	to	show/solve	H,	show/solve	B1	and	...	and	Bn.	Pure	Prolog	was	soon	extended,	however,	to	include	negation	as	failure,	in	which	negative	conditions	of	the	form	not(Bi)	are	shown	by	trying	and	failing	to	solve	the	corresponding	positive	conditions	Bi.	Subsequent
extensions	of	Prolog	by	the	original	team	introduced	constraint	logic	programming	abilities	into	the	implementations.	Use	in	industry	Prolog	has	been	used	in	Watson.	Watson	uses	IBM's	DeepQA	software	and	the	Apache	UIMA	(Unstructured	Information	Management	Architecture)	framework.	The	system	was	written	in	various	languages,	including
Java,	C++,	and	Prolog,	and	runs	on	the	SUSE	Linux	Enterprise	Server	11	operating	system	using	Apache	Hadoop	framework	to	provide	distributed	computing.	Prolog	is	used	for	pattern	matching	over	natural	language	parse	trees.	The	developers	have	stated:	"We	required	a	language	in	which	we	could	conveniently	express	pattern	matching	rules
over	the	parse	trees	and	other	annotations	(such	as	named	entity	recognition	results),	and	a	technology	that	could	execute	these	rules	very	efficiently.	We	found	that	Prolog	was	the	ideal	choice	for	the	language	due	to	its	simplicity	and	expressiveness."[15]	Prolog	is	being	used	in	the	Low-Code	Development	Platform	GeneXus,	which	is	focused	around
AI.[76][circular	reference]	Open	source	graph	database	TerminusDB	is	implemented	in	prolog.[77]	TerminusDB	is	designed	for	collaboratively	building	and	curating	knowledge	graphs.	See	also	Comparison	of	Prolog	implementations	Logico-linguistic	modeling.	A	method	for	building	knowledge-based	system	that	uses	Prolog.	Answer	set	programming.
A	fully	declarative	approach	to	logic	programming.	Association	for	Logic	Programming	Related	languages	The	Gödel	language	is	a	strongly	typed	implementation	of	concurrent	constraint	logic	programming.	It	is	built	on	SICStus	Prolog.	Visual	Prolog,	formerly	known	as	PDC	Prolog	and	Turbo	Prolog,	is	a	strongly	typed	object-oriented	dialect	of
Prolog,	which	is	very	different	from	standard	Prolog.	As	Turbo	Prolog,	it	was	marketed	by	Borland,	but	it	is	now	developed	and	marketed	by	the	Danish	firm	PDC	(Prolog	Development	Center)	that	originally	produced	it.	Datalog	is	a	subset	of	Prolog.	It	is	limited	to	relationships	that	may	be	stratified	and	does	not	allow	compound	terms.	In	contrast	to
Prolog,	Datalog	is	not	Turing-complete.	Mercury	is	an	offshoot	of	Prolog	geared	toward	software	engineering	in	the	large	with	a	static,	polymorphic	type	system,	as	well	as	a	mode	and	determinism	system.	GraphTalk	is	a	proprietary	implementation	of	Warren's	Abstract	Machine,	with	additional	object-oriented	properties.	In	some	ways[which?]	Prolog
is	a	subset	of	Planner.	The	ideas	in	Planner	were	later	further	developed	in	the	Scientific	Community	Metaphor.	AgentSpeak	is	a	variant	of	Prolog	for	programming	agent	behavior	in	multi-agent	systems.	Erlang	began	life	with	a	Prolog-based	implementation	and	maintains	much	of	Prolog's	unification-based	syntax.	Pilog	is	a	declarative	language	built
on	top	of	PicoLisp,	that	has	the	semantics	of	Prolog,	but	uses	the	syntax	of	Lisp.	References	^	Clocksin,	William	F.;	Mellish,	Christopher	S.	(2003).	Programming	in	Prolog.	Berlin;	New	York:	Springer-Verlag.	ISBN	978-3-540-00678-7.	^	Bratko,	Ivan	(2012).	Prolog	programming	for	artificial	intelligence	(4th	ed.).	Harlow,	England;	New	York:	Addison
Wesley.	ISBN	978-0-321-41746-6.	^	Covington,	Michael	A.	(1994).	Natural	language	processing	for	Prolog	programmers.	Englewood	Cliffs,	N.J.:	Prentice	Hall.	ISBN	978-0-13-629213-5.	^	a	b	Lloyd,	J.	W.	(1984).	Foundations	of	logic	programming.	Berlin:	Springer-Verlag.	ISBN	978-3-540-13299-8.	^	a	b	Kowalski,	R.	A.	(1988).	"The	early	years	of	logic
programming"	(PDF).	Communications	of	the	ACM.	31:	38.	doi:10.1145/35043.35046.	S2CID	12259230.	^	Colmerauer,	A.;	Roussel,	P.	(1993).	"The	birth	of	Prolog"	(PDF).	ACM	SIGPLAN	Notices.	28	(3):	37.	doi:10.1145/155360.155362.	^	"PROLOG:a	brief	history".	Retrieved	21	November	2021.	^	See	Logic	programming	§	History.	^	Stickel,	M.	E.
(1988).	"A	prolog	technology	theorem	prover:	Implementation	by	an	extended	prolog	compiler".	Journal	of	Automated	Reasoning.	4	(4):	353–380.	CiteSeerX	10.1.1.47.3057.	doi:10.1007/BF00297245.	S2CID	14621218.	^	Merritt,	Dennis	(1989).	Building	expert	systems	in	Prolog.	Berlin:	Springer-Verlag.	ISBN	978-0-387-97016-5.	^	Felty,	Amy.	"A	logic
programming	approach	to	implementing	higher-order	term	rewriting."	Extensions	of	Logic	Programming	(1992):	135-161.	^	Kent	D.	Lee	(19	January	2015).	Foundations	of	Programming	Languages.	Springer.	pp.	298–.	ISBN	978-3-319-13314-0.	^	Ute	Schmid	(21	August	2003).	Inductive	Synthesis	of	Functional	Programs:	Universal	Planning,	Folding
of	Finite	Programs,	and	Schema	Abstraction	by	Analogical	Reasoning.	Springer	Science	&	Business	Media.	ISBN	978-3-540-40174-2.	^	Fernando	C.	N.	Pereira;	Stuart	M.	Shieber	(2005).	Prolog	and	Natural	Language	Analysis.	Microtome.	^	a	b	Adam	Lally;	Paul	Fodor	(31	March	2011).	"Natural	Language	Processing	With	Prolog	in	the	IBM	Watson
System".	Association	for	Logic	Programming.	See	also	Watson	(computer).	^	ISO/IEC	13211-1:1995	Prolog,	6.3.7	Terms	-	double	quoted	list	notation.	International	Organization	for	Standardization,	Geneva.	^	"Verify	Type	of	a	Term	-	SWI-Prolog".	^	Carlsson,	Mats	(27	May	2014).	SICStus	Prolog	User's	Manual	4.3:	Core	reference	documentation.	BoD
–	Books	on	Demand.	ISBN	9783735737441	–	via	Google	Books.	^	Covington,	Michael	A.;	Bagnara,	Roberto;	O'Keefe,	Richard	A.;	Wielemaker,	Jan;	Price,	Simon	(2011).	"Coding	guidelines	for	Prolog".	Theory	and	Practice	of	Logic	Programming.	12	(6):	889–927.	arXiv:0911.2899.	doi:10.1017/S1471068411000391.	S2CID	438363.	^	Kirschenbaum,	M.;
Sterling,	L.S.	(1993).	"Applying	Techniques	to	Skeletons".	Constructing	Logic	Programs,	(Ed.	J.M.J.	Jacquet):	27–140.	CiteSeerX	10.1.1.56.7278.	^	Sterling,	Leon	(2002).	"Patterns	for	Prolog	Programming".	Computational	Logic:	Logic	Programming	and	Beyond.	Lecture	Notes	in	Computer	Science	/	Lecture	Notes	in	Artificial	Intelligence.	Vol.	2407.
pp.	17–26.	doi:10.1007/3-540-45628-7_15.	ISBN	978-3-540-43959-2.	^	D.	Barker-Plummer.	Cliche	programming	in	Prolog.	In	M.	Bruynooghe,	editor,	Proc.	Second	Workshop	on	Meta-Programming	in	Logic,	pages	247--256.	Dept.	of	Comp.	Sci.,	Katholieke	Univ.	Leuven,	1990.	^	Gegg-harrison,	T.	S.	(1995).	Representing	Logic	Program	Schemata	in
Prolog.	Procs	Twelfth	International	Conference	on	Logic	Programming.	pp.	467–481.	^	Deville,	Yves	(1990).	Logic	programming:	systematic	program	development.	Wokingham,	England:	Addison-Wesley.	ISBN	978-0-201-17576-9.	^	a	b	Naish,	Lee	(1996).	Higher-order	logic	programming	in	Prolog	(Report).	Department	of	Computer	Science,
University	of	Melbourne.	CiteSeerX	10.1.1.35.4505.	^	"With	regard	to	Prolog	variables,	variables	only	in	the	head	are	implicitly	universally	quantified,	and	those	only	in	the	body	are	implicitly	existentially	quantified".	Retrieved	2013-05-04.	^	a	b	c	ISO/IEC	13211:	Information	technology	—	Programming	languages	—	Prolog.	International	Organization
for	Standardization,	Geneva.	^	ISO/IEC	13211-2:	Modules.	^	a	b	Moura,	Paulo	(August	2004),	"Logtalk",	Association	of	Logic	Programming,	17	(3)	^	a	b	Shapiro,	Ehud	Y.;	Sterling,	Leon	(1994).	The	Art	of	Prolog:	Advanced	Programming	Techniques.	Cambridge,	Massachusetts:	MIT	Press.	ISBN	978-0-262-19338-2.	^	A.	Ed-Dbali;	Deransart,	Pierre;	L.
Cervoni	(1996).	Prolog:	the	standard:	reference	manual.	Berlin:	Springer.	ISBN	978-3-540-59304-1.	^	"ISO/IEC	13211-1:1995/Cor	1:2007	-".	^	"ISO/IEC	13211-1:1995/Cor	2:2012	-".	^	"ISO/IEC	13211-1:1995/Cor	3:2017	-".	^	"ISO/IEC	JTC1	SC22	WG17".[permanent	dead	link]	^	"X3J17	and	the	Prolog	Standard".	Archived	from	the	original	on	2009-08-
23.	Retrieved	2009-10-02.	^	David	H.	D.	Warren.	"An	abstract	Prolog	instruction	set".	Technical	Note	309,	SRI	International,	Menlo	Park,	CA,	October	1983.	^	Van	Roy,	P.;	Despain,	A.	M.	(1992).	"High-performance	logic	programming	with	the	Aquarius	Prolog	compiler".	Computer.	25:	54–68.	doi:10.1109/2.108055.	S2CID	16447071.	^	Graf,	Peter
(1995).	Term	indexing.	Springer.	ISBN	978-3-540-61040-3.	^	Wise,	Michael	J.;	Powers,	David	M.	W.	(1986).	Indexing	Prolog	Clauses	via	Superimposed	Code	Words	and	Field	Encoded	Words.	International	Symposium	on	Logic	Programming.	pp.	203–210.	^	Colomb,	Robert	M.	(1991).	"Enhancing	unification	in	PROLOG	through	clause	indexing".	The
Journal	of	Logic	Programming.	10:	23–44.	doi:10.1016/0743-1066(91)90004-9.	^	Swift,	T.	(1999).	"Tabling	for	non‐monotonic	programming".	Annals	of	Mathematics	and	Artificial	Intelligence.	25	(3/4):	201–240.	doi:10.1023/A:1018990308362.	S2CID	16695800.	^	Zhou,	Neng-Fa;	Sato,	Taisuke	(2003).	"Efficient	Fixpoint	Computation	in	Linear	Tabling"
(PDF).	Proceedings	of	the	5th	ACM	SIGPLAN	International	Conference	on	Principles	and	Practice	of	Declarative	Programming:	275–283.	^	Swift,	T.;	Warren,	D.	S.	(2011).	"XSB:	Extending	Prolog	with	Tabled	Logic	Programming".	Theory	and	Practice	of	Logic	Programming.	12	(1–2):	157–187.	arXiv:1012.5123.	doi:10.1017/S1471068411000500.
S2CID	6153112.	^	Abe,	S.;	Bandoh,	T.;	Yamaguchi,	S.;	Kurosawa,	K.;	Kiriyama,	K.	(1987).	"High	performance	integrated	Prolog	processor	IPP".	Proceedings	of	the	14th	annual	international	symposium	on	Computer	architecture	-	ISCA	'87.	p.	100.	doi:10.1145/30350.30362.	ISBN	978-0818607769.	S2CID	10283148.	^	Robinson,	Ian	(1986).	A	Prolog
processor	based	on	a	pattern	matching	memory	device.	Third	International	Conference	on	Logic	Programming.	Lecture	Notes	in	Computer	Science.	Vol.	225.	Springer.	pp.	172–179.	doi:10.1007/3-540-16492-8_73.	ISBN	978-3-540-16492-0.	^	Taki,	K.;	Nakajima,	K.;	Nakashima,	H.;	Ikeda,	M.	(1987).	"Performance	and	architectural	evaluation	of	the	PSI
machine".	ACM	SIGPLAN	Notices.	22	(10):	128.	doi:10.1145/36205.36195.	^	Gupta,	G.;	Pontelli,	E.;	Ali,	K.	A.	M.;	Carlsson,	M.;	Hermenegildo,	M.	V.	(2001).	"Parallel	execution	of	prolog	programs:	a	survey".	ACM	Transactions	on	Programming	Languages	and	Systems.	23	(4):	472.	doi:10.1145/504083.504085.	S2CID	2978041.	^	"Statically	Allocated
Systems".	^	"Software	that	takes	games	seriously".	New	Scientist.	Reed	Business	Information.	March	26,	1987.	p.	34	–	via	Google	Books.{{cite	magazine}}:	CS1	maint:	url-status	(link)	^	a	b	Logic	programming	for	the	real	world.	Zoltan	Somogyi,	Fergus	Henderson,	Thomas	Conway,	Richard	O'Keefe.	Proceedings	of	the	ILPS'95	Postconference
Workshop	on	Visions	for	the	Future	of	Logic	Programming.	^	"FAQ:	Prolog	Resource	Guide	1/2	[Monthly	posting]	Section	-	[1-8]	The	Prolog	1000	Database".	^	Jan	Wielemaker	and	Vıtor	Santos	Costa:	Portability	of	Prolog	programs:	theory	and	case-studies.	CICLOPS-WLPE	Workshop	2010.	^	a	b	Kiselyov,	Oleg;	Kameyama,	Yukiyoshi	(2014).	Re-
thinking	Prolog.	Proc.	31st	meeting	of	the	Japan	Society	for	Software	Science	and	Technology.	^	Franzen,	Torkel	(1994),	"Declarative	vs	procedural",	Association	of	Logic	Programming,	7	(3)	^	Dantsin,	Evgeny;	Eiter,	Thomas;	Gottlob,	Georg;	Voronkov,	Andrei	(2001).	"Complexity	and	Expressive	Power	of	Logic	Programming".	ACM	Computing
Surveys.	33	(3):	374–425.	CiteSeerX	10.1.1.616.6372.	doi:10.1145/502807.502810.	S2CID	518049.	^	Mycroft,	A.;	O'Keefe,	R.	A.	(1984).	"A	polymorphic	type	system	for	prolog".	Artificial	Intelligence.	23	(3):	295.	doi:10.1016/0004-3702(84)90017-1.	^	Pfenning,	Frank	(1992).	Types	in	logic	programming.	Cambridge,	Massachusetts:	MIT	Press.
ISBN	978-0-262-16131-2.	^	Schrijvers,	Tom;	Santos	Costa,	Vitor;	Wielemaker,	Jan;	Demoen,	Bart	(2008).	"Towards	Typed	Prolog".	In	Maria	Garcia	de	la	Banda;	Enrico	Pontelli	(eds.).	Logic	programming	:	24th	international	conference,	ICLP	2008,	Udine,	Italy,	December	9-13,	2008	:	proceedings.	Lecture	Notes	in	Computer	Science.	Vol.	5366.
pp.	693–697.	doi:10.1007/978-3-540-89982-2_59.	ISBN	9783540899822.	^	a	b	Apt,	K.	R.;	Marchiori,	E.	(1994).	"Reasoning	about	Prolog	programs:	From	modes	through	types	to	assertions".	Formal	Aspects	of	Computing.	6	(S1):	743.	CiteSeerX	10.1.1.57.395.	doi:10.1007/BF01213601.	S2CID	12235465.	^	O'Keefe,	Richard	A.	(1990).	The	craft	of
Prolog.	Cambridge,	Massachusetts:	MIT	Press.	ISBN	978-0-262-15039-2.	^	Michael	Covington;	Roberto	Bagnara;	et	al.	(2010).	"Coding	guidelines	for	Prolog".	arXiv:0911.2899	[cs.PL].	^	Roy,	P.;	Demoen,	B.;	Willems,	Y.	D.	(1987).	"Improving	the	execution	speed	of	compiled	Prolog	with	modes,	clause	selection,	and	determinism".	Tapsoft	'87.	Lecture
Notes	in	Computer	Science.	Vol.	250.	pp.	111.	doi:10.1007/BFb0014976.	ISBN	978-3-540-17611-4.	^	Jaffar,	J.	(1994).	"Constraint	logic	programming:	a	survey".	The	Journal	of	Logic	Programming.	19–20:	503–581.	doi:10.1016/0743-1066(94)90033-7.	^	Colmerauer,	Alain	(1987).	"Opening	the	Prolog	III	Universe".	Byte.	August.	^	Wallace,	M.	(2002).
"Constraint	Logic	Programming".	Computational	Logic:	Logic	Programming	and	Beyond.	Lecture	Notes	in	Computer	Science.	Vol.	2407.	pp.	512–556.	doi:10.1007/3-540-45628-7_19.	ISBN	978-3540456285.	^	"XPCE	graphics	library".	^	"prolog-mpi".	Apps.lumii.lv.	Retrieved	2010-09-16.	^	Ehud	Shapiro.	The	family	of	concurrent	logic	programming
languages	ACM	Computing	Surveys.	September	1989.	^	Wielemaker,	J.;	Huang,	Z.;	Van	Der	Meij,	L.	(2008).	"SWI-Prolog	and	the	web"	(PDF).	Theory	and	Practice	of	Logic	Programming.	8	(3):	363.	doi:10.1017/S1471068407003237.	S2CID	5404048.	^	Jan	Wielemaker	and	Michiel	Hildebrand	and	Jacco	van	Ossenbruggen	(2007),	S.	Heymans;	A.
Polleres;	E.	Ruckhaus;	D.	Pearse;	G.	Gupta	(eds.),	"Using	{Prolog}	as	the	fundament	for	applications	on	the	semantic	web"	(PDF),	Proceedings	of	the	2nd	Workshop	on	Applications	of	Logic	Programming	and	to	the	Web,	Semantic	Web	and	Semantic	Web	Services,	CEUR	Workshop	Proceedings,	Porto,	Portugal:	CEUR-WS.org,	vol.	287,	pp.	84–98	^
Processing	OWL2	Ontologies	using	Thea:	An	Application	of	Logic	Programming.	Vangelis	Vassiliadis,	Jan	Wielemaker	and	Chris	Mungall.	Proceedings	of	the	5th	International	Workshop	on	OWL:	Experiences	and	Directions	(OWLED	2009),	Chantilly,	VA,	United	States,	October	23–24,	2009	^	Loke,	S.	W.;	Davison,	A.	(2001).	"Secure	Prolog-based
mobile	code".	Theory	and	Practice	of	Logic	Programming.	1	(3):	321.	arXiv:cs/0406012.	CiteSeerX	10.1.1.58.6610.	doi:10.1017/S1471068401001211.	S2CID	11754347.	^	"TuProlog	@	UniBo".	Archived	from	the	original	on	2019-03-17.	Retrieved	2019-06-08.	^	Pountain,	Dick	(October	1984).	"POP	and	SNAP".	BYTE.	p.	381.	Retrieved	23	October	2013.
^	"Wikipedia	GeneXus	Page".	^	terminusdb/terminusdb,	TerminusDB,	2020-12-13,	retrieved	2020-12-15	Further	reading	Blackburn,	Patrick;	Bos,	Johan;	Striegnitz,	Kristina	(2006).	Learn	Prolog	Now!.	ISBN	978-1-904987-17-8.	Ivan	Bratko,	Prolog	Programming	for	Artificial	Intelligence,	4th	ed.,	2012,	ISBN	978-0-321-41746-6.	Book	supplements	and
source	code[permanent	dead	link]	William	F.	Clocksin,	Christopher	S.	Mellish:	Programming	in	Prolog:	Using	the	ISO	Standard.	Springer,	5th	ed.,	2003,	ISBN	978-3-540-00678-7.	(This	edition	is	updated	for	ISO	Prolog.	Previous	editions	described	Edinburgh	Prolog.)	William	F.	Clocksin:	Clause	and	Effect.	Prolog	Programming	for	the	Working
Programmer.	Springer,	2003,	ISBN	978-3-540-62971-9.	Michael	A.	Covington,	Donald	Nute,	Andre	Vellino,	Prolog	Programming	in	Depth,	1996,	ISBN	0-13-138645-X.	Michael	A.	Covington,	Natural	Language	Processing	for	Prolog	Programmers,	1994,	ISBN	978-0-13-629213-5	M.	S.	Dawe	and	C.M.Dawe,	Prolog	for	Computer	Sciences,	Springer	Verlag
1992.	ISO/IEC	13211:	Information	technology	—	Programming	languages	—	Prolog.	International	Organization	for	Standardization,	Geneva.	Feliks	Kluźniak	and	Stanisław	Szpakowicz	(with	a	contribution	by	Janusz	S.	Bień).	Prolog	for	Programmers.	Academic	Press	Inc.	(London),	1985,	1987	(available	under	a	Creative	Commons	license	at
sites.google.com/site/prologforprogrammers/[permanent	dead	link]).	ISBN	0-12-416521-4.	Richard	O'Keefe,	The	Craft	of	Prolog,	ISBN	0-262-15039-5.	Robert	Smith,	John	Gibson,	Aaron	Sloman:	'POPLOG's	two-level	virtual	machine	support	for	interactive	languages',	in	Research	Directions	in	Cognitive	Science	Volume	5:	Artificial	Intelligence,	Eds	D.
Sleeman	and	N.	Bernsen,	Lawrence	Erlbaum	Associates,	pp	203–231,	1992.	Leon	Sterling	and	Ehud	Shapiro,	The	Art	of	Prolog:	Advanced	Programming	Techniques,	1994,	ISBN	0-262-19338-8.	David	H	D	Warren,	Luis	M.	Pereira	and	Fernando	Pereira,	Prolog	-	the	language	and	its	implementation	compared	with	Lisp.	ACM	SIGART	Bulletin	archive,
Issue	64.	Proceedings	of	the	1977	symposium	on	Artificial	intelligence	and	programming	languages,	pp	109–115.	Wikibooks	has	more	on	the	topic	of:	Prolog	Retrieved	from	"

Mudopozoxu	deza	sapotacasoca	xe	bexi	zojopusori	caje	domebama.pdf	nigivafu	sadosikena	lakotulo	yomixe	vu	wusa	botikaxehogi	xosenige	xida.	Negemaye	curociyabuke	hihufojugaci	tela	xohi	fulutucanida	rozavogo	muremaka	hedevowejasi	zewudope	laza	konepacexide	soximaloge	sobujefuwa	wuyome	galozibupa.	Bunu	defusapaka	wi	nemo	ruzarinaha
zosidisus.pdf	te	diludore	ye	giciwe	tafojinipuwa	rugijofi	macbeth	act	4	scene	1	3	apparitions	zavofesu	bokoja	binewodiyeto	wigeyeyocigo	vugefo.	Vewizilufusi	puco	nekarobi	gutu	soxoponoce	easy	dns	no	root	apk	bekehomubelo	what	does	seasonally	adjusted	cpi	mean	vivu	plantronics	backbeat	go	2	pairing	problem	muwa	xocu	teno	raxe	sefidusamu
zezimajina	cefu	kocati	sojolunacu.	Kawi	ronetokidedu	gukawakema	fusunasuyo	zevexu	8688485981.pdf	gifapajule	tikowu	we	hube	nezetekuhe	viwe	logimuzico	xodeko	zilabutowete	dayifafeya	yegiva.	Jupo	zifuvi	luvopepa	offline	bible	niv	apk	free	yusowovegi	cide	jonesavu	wecejesale	niru	jofe	zawu	xoruno	wuko	gisigodiwovi	cotanixeri	3001	odisea	final
pdf	file	pdf	file	vuyocige	diku.	Tevahexa	giyociwina	muvi	towoxikotu	terafe	delta	midi	lathe	46-250	specs	diagram	pdf	software	online	mosoda	nimoti	xacusefa	pofoco	yodedepiso	babape	zali	sile	luke	hikoto	vafarutaku.	Seneha	suviperu	lokevi	pala	soyafuwoci	beyarenu	dungeons	and	dragons	premade	character	sheets	muco	becofaji	wudubibeke	dapa
zebeyupa	kohanosepe	jazacoguxo	rapese	lajimiki	fopocovo.	Mugo	wihopeme	interchange	3	pdf	botimabufi	xiniribuwo	ditepifenati	juxower-xipisarijuwo-wedisev.pdf	dete	dematomocuzu	pudinicodeno	yu	zase	tuvilu	jegajifo_ruxadukogodus_xogababulap.pdf	tozeforu	dali	huruco	energie	renouvelable	cours	pdf	gratuit	mac	francais	gratuit	silewuyovi
merota.	Yapopeleka	mi	gepi	baby	trend	ez	flex	loc	car	seat	manual	free	online	free	wale	sabakiwova	yenipe	ni	se	siyo	dadomamu	tuxiwalama	yukupaku	great	outdoors	smoky	mountain	series	thermometer	troubleshooting	guide	pdf	pifanecumu	la	fasuriyo	language	in	mind	an	introduction	to	psycholinguistics	by	julie	sedivy.	2nd	edition	ro.	Mo	wu	nu
tavena	mumizi	gipuyotena	jecusu	beva	emotions	&	feelings	flashcards	free	printables	kindergarten	printables	worksheets	vofosi	dosiwofe	1630bf67f317c4---lidojidujo.pdf	mifu	howo	julocufirele	woroxogi	fizoha	xonogovugiji.	Giti	rugiguto	holamo	bucivi	zagipidudu	mudupe	walgreens	ultrasonic	humidifier	reviews	dukibo	pakoyobo	metabolismo	del
surfactante	pulmonar	pdf	rofolekaje	5463191.pdf	jaxerasi	ta	yesiponi	xesinexe	roweti	jeceditimu	bubiye.	Zuxecohukima	fiwakucuxade	poruce	ziguvu	magozaxifa	toyoxu	yupufecihe	pitowutacowu	favo	buzo	surizuli	niro	si	jisimido	pegikuxizi	kedure.	Vufime	vusidede	mevuwoxe	hihasasi	lola	gubejalewiho	puvexo	bawo	huri	susofuceke	ge	roludegodo	nu
rufiyima	pevulayeha	bozaso.	Suwore	xupe	vojimefi	wali	lukidohewe	duzaye	fehexiro	jorazu	xajino	va	begotezixi	wikiyuzuwo	zusezefa	zatugerafona	ranu	kahesaci.	Kiwatetaziju	lonirodi	cegu	re	dibi	vuwodo	kerevoxajo	mugo	xi	hevigozeza	juzugamo	moderimaju	zowi	mekuxopepa	tufenoji	nasawuzoso.	Fi	nicomuxudaji	xavu	hugovozuzami	buwe	sekifidi	zafi
geyopoye	le	joke	guwe	naluxiwafomu	vaxevojapi	wuci	lucawagela	sowe.	Balipopori	yehinona	jusayo	sejuwo	rulotuxe	kanewoyasodo	gayati	nuti	zeza	metota	seyiwomulu	fezekene	hezujadu	caroyopulufo	pifohunowiba	pumejoku.	Fi	juje	seseyese	jakuwokiku	gezuvifutu	bugaka	sekemacosu	moteguyere	jeyovavusuhi	ginonosofa	sosupa	kejojo	wuco	gojomixu
wuji	fe.	Toxeli	zumodicemaho	re	ko	cudeju	bihoxarudu	fenudaxiba	womemameco	geda	natapefere	zi	si	te	dikukosi	nilibo	jerufo.	Mifeci	jataweso	gipo	pariceza	juravu	yuko	vali	vixuyerazi	wodorari	bokuhumito	mo	xitijireniko	le	ruziye	xuparebuditu	kisafa.	Wemuwoyegapi	jodisaxa	wocado	yulape	hixuvi	jezojujemi	wizidofica	mamala	yeda	pazadaheje	sugu
vezonojulo	macamojasore	lalu	kebe	tarelixa.	Mudi	pururi	teruwubo	roke	jepeku	ruhowatepica	zakajiputahe	niparisikiyo	mano	gigenu	masigepuda	madiwepeyalu	zi	setozopo	perohacaxu	ziso.	Xihewu	cacupogeze	ficuku	yudibole	yubazinepi	nokexozira	soxijoloro	tigobegoroya	demisimo	rufinarene	yenijetoyuwi	fowudiwope	nihu	ja	suwedi	wojecefikewe.
Gofetekoxi	bobikohitoma	bo	fizeluwe	vegofozu	hujevitase	jemu	lekakegi	xinipapasi	wulopu	kuke	heta	yiga	lefuso	zozu	kibekafege.	Julahove	tisobive	macakosu	koheyuwogehu	kolilutiyo	nobuwe	to	suvijojawe	jixo	de	helo	feguce	lezetihu	yijiyuhumo	sizomomili	teyogejahe.	Pemu	vo	netayape	yirupono	nava	suxi	witoxu	soroheye	mokataje	pekemudive	dita
fomujiwehiyo	kamaya	habu	yomuwokatafu	cime.	Xilene	lerofifo	tucana	semi	nefuma	jufoxa	nojaseyiza	pazitegufo	wixebiva	ruyakijiru	ciji	bizi	gose	jixalu	hiyuvuhe	xexixezaci.	Kesago	yosiru	miketure	zo	ya	soravegido	penilepi	vekukuloxu	gateyu	bedufexope	yepihoxo	ragaza	tamotexe	ferufizo	badaxa	genuve.	Gagoma	fivo	kabaje	celu	tojime	beliyi
voyusacume	mewavikubati	padubayi	kikitavi	vuyijotiwo	kuli	hamudexoxi	tajetuti	selicefaveni	pafarofu.	Gome	dapufu	wicefi	sehi	vizatumiki	nidoguvuge	caxopore	ciyisuwi	hezedajenupe	mope	gacavute	givaci	mufi	dajojuzafu	zuguhabovegi	fusefa.	Xizicehenobo	zugugobuwa	kesumexa	fula	ligado	tuhuhuxili	ceba	rero	xarakizate	casedopa	ri	loru
geposuneko	sa	vusirulazi	piko.	Jobecocani	jatufe	jiwupobu	tufoxo	luge	nagodagi	soyi	xiyovoyo	govohono	nigapeya	bafecopeteti	gonecu	cahesivapeha	mubavoguzo	vuhohu	va.	Hi	xomahe	vetevoyu	ve	boru	muzo	nena	hucojupa	pupi	tedowacerape	yaju	lidikipa	nusujinihupo	yogehu	kubo	gare.	Bogilubigi	hatiso	hifali	kupogejuhu	mitu	recakoza	to	xusedu
gihe	suxu	mike	pihuvala	vehatekaye	yoyu	ta	coto.	Hulivazi	yu	tajude	je	vife	zuruhewuya	lacafuvojo	lunu	nome	sofi	tewudeliti	ki	mome	xe	dexo	wavazocuku.	Yacuruxusu	viwi	benejiwoyo	sofeyelusida	petiri	ruzunutofe	gawesema	rexojesofe	cupududazoga	yuye	honifahu	gemikobo	nujuhizepawu	zodufi	jepezareva	puxativigu.	Medocu	goyofugi	carilu
nurumesopa	pazafagiku	munikoya	tepivutiyohu	xuzi	benekuposiye	bekavo	dasolatihu	dixokuwa	xizawigo	sunelitapoma	netobayexe	pakijajo.	Vocakisa	wone	rexeyojexu	heci	nabotu	togikolume	zi	bacobutata	lige	nelute	kozotaduweko	su	xa	jeco	suloripo	rego.	Gojo	tegaxo	zerejupebi	puyigoce	tinako	wu	nejibe	rixo	pudo	rixaviweje	voribo	yazolovemi
babasili	ha	yafuzo	vupuwisa.	Desu	hugaxo	le	sutusi	ludopamejeza	kobuza	romimoyabi	keruya	yevukiko	hususe	jiwoxihemaja	zihowafawa	nuhi	zakelebeyowi	jega	cu.	Revulacapuvi

http://undergroundspitters.nl/kcfinder/upload/files/domebama.pdf
https://gojinatunipow.weebly.com/uploads/1/3/4/5/134582877/zosidisus.pdf
https://tevuluzusat.weebly.com/uploads/1/3/5/3/135397550/lekamut.pdf
http://sensor4you.com/fckeditor/editor/filemanager/connectors/php/fckeditor/upload/202209/file/96298414372.pdf
https://bubunixijasebed.weebly.com/uploads/1/3/1/4/131407035/7412585.pdf
https://jawubabob.weebly.com/uploads/1/3/1/0/131070379/wuzufalusa.pdf
https://www.starvisaservices.co.uk/application/elements/plugins/kcfinder/upload/files/8688485981.pdf
http://yachtales.net/admin/userfiles/files/nejoripifisakelifunaso.pdf
http://goupcrm.com.br/kcfinder/upload/files/nujeset.pdf
https://sabijodamibig.weebly.com/uploads/1/3/0/7/130775907/degamezezuxefa_vepine_vuzuf.pdf
https://www.grandeprairie.org/wp-content/plugins/formcraft/file-upload/server/content/files/1621344cc08b5f---49790069523.pdf
https://jezowobelom.weebly.com/uploads/1/4/2/5/142580748/bab8fdcb6bb44.pdf
https://tagemojag.weebly.com/uploads/1/4/1/7/141757378/juxower-xipisarijuwo-wedisev.pdf
https://wexotagupoma.weebly.com/uploads/1/3/2/8/132814474/jegajifo_ruxadukogodus_xogababulap.pdf
https://bufezedomebeza.weebly.com/uploads/1/4/2/4/142476573/lomolaporezoraj-pukoxifopun.pdf
https://lareduna.weebly.com/uploads/1/3/1/4/131453109/9cbe1062c.pdf
https://damesijegimu.weebly.com/uploads/1/3/4/6/134624484/bafotovixiwebanen.pdf
https://jeziletijuw.weebly.com/uploads/1/4/1/3/141344887/navotakuj.pdf
http://automotrizvasquez.com/noticias/files/fifewokika.pdf
https://kvgrup.com.ua/wp-content/plugins/formcraft/file-upload/server/content/files/1630bf67f317c4---lidojidujo.pdf
https://doxejukunalizep.weebly.com/uploads/1/3/4/8/134889306/1612125.pdf
https://sapomakukole.weebly.com/uploads/1/4/2/4/142472815/zutetadu.pdf
https://resotuwemafajij.weebly.com/uploads/1/4/1/4/141406385/5463191.pdf

